Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator
نویسندگان
چکیده
— Thanks to an approach inspired from Burq-Lebeau [6], we prove stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity is almost surely locally well-posed in L(R) for any d ≥ 2. Then, we show that we can combine this result with the high-low frequency decomposition method of Bourgain to prove a.s. global well-posedness results for the cubic equation: when d = 2, we prove global well-posedness in H(R) for any s > 0, and when d = 3 we prove global well-posedness in H(R) for any s > 1/6, which is a supercritical regime. Furthermore, we also obtain almost sure global well-posedness results with scattering for supercritical NLS on R without potential.
منابع مشابه
Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method
Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...
متن کاملSolution of strongly nonlinear oscillator problem arising in Plasma Physics with Newton Harmonic Balance Method
In this paper, Newton Harmonic Balance Method (NHBM) is applied to obtain the analytical solution for an electron beam injected into a plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. Periodic solution is analytically verified and consequently the relation between the Natural Frequency and the amplitude is obtained in an ana...
متن کاملLong time dynamics for the one dimensional non linear Schrödinger equation
— In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byp...
متن کاملGlobal well-posedness for the Schrödinger equation coupled to a nonlinear oscillator
The Schrödinger equation with the nonlinearity concentrated at a single point proves to be an interesting and important model for the analysis of long-time behavior of solutions, such as the asymptotic stability of solitary waves and properties of weak global attractors. In this note, we prove global well-posedness of this system in the energy space H1.
متن کاملNumerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013